If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+19x-9=0
a = 2; b = 19; c = -9;
Δ = b2-4ac
Δ = 192-4·2·(-9)
Δ = 433
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{433}}{2*2}=\frac{-19-\sqrt{433}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{433}}{2*2}=\frac{-19+\sqrt{433}}{4} $
| 4x×x-3=1 | | 9t=5 | | 77+-1x=176+-10x | | 3a-9=13-3a | | 3-9a=12-3a | | x/5.7=8.5x= | | 3a-9=13-9a | | x-2/4+x+1/3=1 | | 3a-9=14-9a | | 2(7=6n)=110 | | -8(5x-4)=-208 | | 4x+4=-3-1 | | 91=7(7+p) | | 440/6-19/6=w | | x2−3x−10=0 | | -8-14n=-247 | | 6x−53=5x+9 | | -8v+11=-125 | | -14v-13=267 | | 88=-3-7p | | -8=4+p/2 | | 2z÷9+8=7 | | -10b^2+33b-20=0 | | x2−9x+20=x | | -3x+46=x+14 | | 36x^2-36x+109=0 | | k−71=81 | | x/5-14=-17 | | 9/m+4=7 | | 9x-(2x-4)=5(x-1) | | 378=c−56 | | 2a-9=13-9a |